Math 1023	College Algebra	Worksheet 4	Name:
	Prof. Paul Bailey	April 14, 2004	

A *rational function* is a function of the form

$$f(x) = \frac{g(x)}{h(x)}$$

where g(x) and h(x) are polynomials. A rational function is in *lowest form* if the numerator and the denominator have no common zeros. Assume that f(x) = g(x)/h(x) is a rational function in lowest form. The *degree* of f(x) is max $\{\deg(g), \deg(h)\}$.

The roots of f(x) are the zeros of g(x); that is, they are the solutions to g(x) = 0.

The poles of f(x) the zeros of h(x); that is, they are the solutions to h(x) = 0.

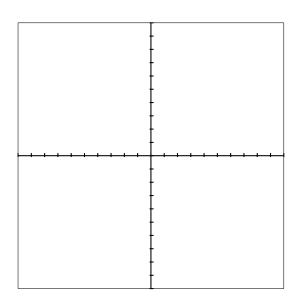
The *y*-intercept of f(x) is the point (0, f(0)).

The x-intercepts of f(x) are the points (r, 0), where r is a root of f(x).

The vertical asymptotes of f(x) are the lines x = p, where p is a pole of f(x).

The polynomial asymptote of f(x) is the polynomial equation y = q(x), where q(x) is the quotient when g(x) is divided by h(x) using polynomial division.

I
+
+
Į
+
ţ
+ I
 + • • • • • • • • • • • •
+
- - -
- - - - - -
- - - - -


Problem 1:	$f(x) = \frac{2}{x-1}$
Degree:	
Roots:	
Poles:	
y-intercept:	
x-intercepts:	
Vertical Asympto	tes:
Polynomial Asym	ptote:

- - - -
-

Problem 2:	$f(x) = \frac{6x+3}{2x-4}$			
Degree:				
Roots:				
Poles:				
y-intercept:				
x-intercepts:				
Vertical Asymptotes:				
Polynomial Asymptote:				

			-			
 	-+ -+	• •		 	 	
			Г			
			-			

Problem 3: $f(x) = \frac{x^2 - 2x - 15}{x + 1}$ Degree:Roots:Poles:y-intercept:x-intercepts:Vertical Asymptotes:Polynomial Asymptote:

Problem 4:	$f(x) = \frac{x^2 - 49}{x^2 - 25}$	
Degree:		
Roots:		
Poles:		
y-intercept:		
x-intercepts:		
Vertical Asymptotes:		
Polynomial Asym	ptote:	

- - - - - -

Problem 5:	$f(x) = \frac{x^3 - x}{x^2 - 9}$	
Degree:		
Roots:		
Poles:		
y-intercept:		
x-intercepts:		
Vertical Asymptotes:		
Polynomial Asymp	otote:	